常识性推理是自然语言处理(NLP)的一个吸引人的话题,因为它在支持NLP系统的类似人类行为方面起着基本作用。以大规模的语言模型作为骨干,无监督的预培训在众多CORPORA上显示出捕获常识性知识的潜力。当前基于预训练的语言模型(PLM)推理遵循传统实践使用困惑度量。但是,常识性推理不仅仅是现有的概率评估,后者偏向单词频率。本文重新考虑了常识性推理的性质,并提出了一种新颖的常识性推理指标,非替代信心(NRC)。详细介绍,它根据Electra中替换的令牌检测(RTD)预训练目标的替换代币检测(RTD)的作用,在该目标中,腐败检测目标反映了对上下文完整性的信心,而与现有概率相比,与常识性推理更相关。我们提出的新方法可以提高两个常识性推理基准数据集上的零射击性能,并在另外七个共识性提问数据集上提高了零射击性能。我们的分析表明,预先认识的常识性知识,尤其是对于基于RTD的PLM,对于下游推理至关重要。
translated by 谷歌翻译
我们在本报告中报告了DeBertav3在CommonSenseQA上的性能。我们只是将答案选择正式为Debertav3的文本分类。DeBertav3的强大自然语言推理能力有助于其单一和合奏模型为CommonSenseQA设定了新的(不包括外部知识)。
translated by 谷歌翻译
隐私保护是联合学习中的一个重要和有关的主题,特别是对于自然语言处理。在客户端设备中,用户每天由用户产生大量包含个人信息的文本。由于来自用户信息的直接应用可能会引起个人隐私,因此在联合学习中提出了许多方法来阻止来自客户端设备中的原始信息的中心模型。在本文中,我们尝试通过在保留语义时扭曲文本来更新语言。在实践中,我们利用最近提出的公制,邻近分布分配,以评估失真期间的语义保存。基于度量标准,我们提出了两个用于语义保存的失真,生成的一个和替代的框架。由于目前的自然语言处理领域中缺乏隐私相关任务,我们对命名实体识别和选区解析进行实验。我们的实验结果表明了我们扭曲的合理性和效率,作为个人隐私保护的方法。
translated by 谷歌翻译
我们研究了具有动态,可能的周期性的流量的预测问题和区域之间的关节空间依赖关系。鉴于从时隙0到T-1的城市中区的聚合流入和流出流量,我们预测了任何区域的时间t的流量。该地区的现有技术通常以脱钩的方式考虑空间和时间依赖性,或者在具有大量超参数曲调的训练中是相当的计算密集。我们提出了ST-TIS,一种新颖,轻巧和准确的空间变压器,具有信息融合和区域采样进行交通预测。 ST-TIS将规范变压器与信息融合和区域采样延伸。信息融合模块捕获区域之间的复杂空间依赖关系。该区域采样模块是提高效率和预测精度,将计算复杂性切割为依赖性学习从$ O(n ^ 2)$到$ O(n \ sqrt {n})$,其中n是区域的数量。比最先进的模型的参数较少,我们模型的离线培训在调整和计算方面明显更快(培训时间和网络参数减少高达90±90 \%)。尽管存在这种培训效率,但大量实验表明,ST-TIS在网上预测中大幅度更准确,而不是最先进的方法(平均改善高达11 \%$ 11 \%$ ON MAPE上的$ 14 \%$ 14 \%$ 14 \%$ ON MAPE) 。
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
The traditional statistical inference is static, in the sense that the estimate of the quantity of interest does not affect the future evolution of the quantity. In some sequential estimation problems however, the future values of the quantity to be estimated depend on the estimate of its current value. This type of estimation problems has been formulated as the dynamic inference problem. In this work, we formulate the Bayesian learning problem for dynamic inference, where the unknown quantity-generation model is assumed to be randomly drawn according to a random model parameter. We derive the optimal Bayesian learning rules, both offline and online, to minimize the inference loss. Moreover, learning for dynamic inference can serve as a meta problem, such that all familiar machine learning problems, including supervised learning, imitation learning and reinforcement learning, can be cast as its special cases or variants. Gaining a good understanding of this unifying meta problem thus sheds light on a broad spectrum of machine learning problems as well.
translated by 谷歌翻译